A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI.
نویسندگان
چکیده
In Arabidopsis thaliana, the main route of cyclic electron transport around PSI is sensitive to antimycin A, but the site of inhibition has not been clarified. We discovered that ferredoxin-dependent plastoquinone reduction in ruptured chloroplasts was less sensitive to antimycin A in Arabidopsis that overaccumulated PGR5 (PROTON GRADIENT REGULATION 5) originating from Pinus taeda (PtPGR5) than that in the wild type. Consistent with this in vitro observation, infiltration of antimycin A reduced PSII yields and the non-photochemical quenching (NPQ) of Chl fluorescence in wild-type leaves but not in leaves accumulating PtPGR5. There are eight amino acid differences between PGR5 of Arabidopsis (AtPGR5) and PtPGR5 in their mature forms. To determine the site conferring antimycin A resistance, a series of AtPGR5 and PtPGR5 variants was introduced into the Arabidopsis pgr5 mutant. We determined that the presence of lysine rather than valine at the third amino acid position was necessary and sufficient for resistance to antimycin A. High levels of resistance to antimycin A required overaccumulation of PtPGR5 in ruptured chloroplasts, suggesting that PtPGR5 is partly resistant to antimycin A. In contrast, PSII yield was almost fully resistant to antimycin A in leaves accumulating endogenous levels of PtPGR5 or AtPGR5 V3K that had lysine instead of valine at the third position. NPQ was also dramatically recovered in leaves of these lines. These results imply that partial recovery of PSI cyclic electron transport is sufficient for maintaining redox homeostasis in photosynthesis. Our discovery suggests that antimycin A inhibits the function of PGR5 or proteins localized close to PGR5.
منابع مشابه
Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 flaveria species.
Cyclic electron transport around PSI has been proposed to supply the additional ATP required for C(4) photosynthesis. To investigate the nature of cyclic electron pathways involved in C(4) photosynthesis, we analyzed tissue-specific expression of PGR5 (PROTON GRADIENT REGULATION 5), which is involved in the antimycin A-sensitive pathway, and NDH-H, a subunit of the plastidial NAD(P)H dehydrogen...
متن کاملA physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice
Plants experience a highly variable light environment over the course of the day. To reveal the molecular mechanisms of their photosynthetic response to fluctuating light, we examined the role of two cyclic electron flows around photosystem I (CEF-PSI)--one depending on PROTON GRADIENT REGULATION 5 (PGR5) and one on NADH dehydrogenase-like complex (NDH)--in photosynthetic regulation under fluct...
متن کاملIncreased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.
Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the invol...
متن کاملAntimycin A-like molecules inhibit cyclic electron transport around photosystem I in ruptured chloroplasts☆
Antimycin A3 (AA) is used as an inhibitor of cyclic electron transport around photosystem I. However, the high concentrations of AA that are needed for inhibition have secondary effects, even in chloroplasts. Here, we screened for chemicals that inhibited ferredoxin-dependent plastoquinone reduction in ruptured chloroplasts at lower concentrations than those required for AA. We identified two A...
متن کاملEfficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis.
In higher plants, the chloroplast NAD(P)H dehydrogenase (NDH) complex mediates photosystem I (PSI) cyclic and chlororespiratory electron transport. We reported previously that NDH interacts with the PSI complex to form a supercomplex (NDH-PSI). In this study, NDH18 and FKBP16-2 (FK506 Binding Protein 16-2), detected in the NDH-PSI supercomplex by mass spectrometry, were shown to be NDH subunits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 54 9 شماره
صفحات -
تاریخ انتشار 2013